Hele-shaw flow simulation with interactive control using complex barycentric coordinates

نویسندگان

  • Aviv Segall
  • Orestis Vantzos
  • Mirela Ben-Chen
چکیده

Hele-Shaw flow describes the slow flow of a viscous liquid between two parallel plates separated by a small gap. In some configurations such a flow generates instabilities known as Saffman-Taylor fingers, which form intricate visual patterns. While these patterns have been an inspiration for artists, as well as thoroughly analyzed by mathematicians, efficiently simulating them remains challenging. The main difficulty involves efficiently computing a harmonic function on a time-varying planar domain, a problem which has been recently addressed in the shape deformation literature using a complex-variable formulation of generalized barycentric coordinates. We propose to leverage similar machinery, and show how the model equations for the Hele-Shaw flow can be formulated in this framework. This allows us to efficiently simulate the flow, while allowing interactive user control of the behavior of the fingers. We additionally show that complex barycentric coordinates are applicable to the exterior domain, and use them to simulate two-phase flow, yielding a variety of interesting patterns.

منابع مشابه

2D Simulation and Mapping using the Cauchy-Green Complex Barycentric Coordinates

2D Simulation and Mapping using the Cauchy-Green Complex Barycentric Coordinates Conformal maps are especially useful in geometry processing for computing shape preserving deformations, image warping and manipulating harmonic functions. The Cauchy-Green coordinates are complex-valued barycentric coordinates, which can be used to parameterize a space of conformal maps from a planar domain bounde...

متن کامل

Higher Order Barycentric Coordinates

In recent years, a wide range of generalized barycentric coordinates has been suggested. However, all of them lack control over derivatives. We show how the notion of barycentric coordinates can be extended to specify derivatives at control points. This is also known as Hermite interpolation. We introduce a method to modify existing barycentric coordinates to higher order barycentric coordinate...

متن کامل

ar X iv : m at h / 04 11 43 7 v 1 [ m at h . PR ] 1 9 N ov 2 00 4 Quantum Hele - Shaw flow

In this note, we discuss the quantum Hele-Shaw flow, a random measure process in the complex plane introduced by the physicists P.Wiegmann, A. Zabrodin, et al. This process arises in the theory of electronic droplets confined to a plane under a strong magnetic field, as well as in the theory of random normal matrices. We extend a result of Elbau and Felder [6] to general external field potentia...

متن کامل

On the gradient flow of a one-homogeneous functional

We consider the gradient flow of a one-homogeneous functional, whose dual involves the derivative of a constrained scalar function. We show in this case that the gradient flow is related to a weak, generalized formulation of a Hele-Shaw flow. The equivalence follows from a variational representation, which is a variant of well-known variational representations for the Hele-Shaw problem. As a co...

متن کامل

Kinetic roughening in two-phase fluid flow through a random Hele-Shaw cell.

A nonlocal interface equation is derived for two-phase fluid flow, with arbitrary wettability and viscosity contrast, c=(mu(1)-mu(2))/(mu(1)+mu(2)), in a model porous medium defined as a Hele-Shaw cell with random gap b(0)+delta b. Fluctuations of both capillary and viscous pressure are explicitly related to the microscopic quenched disorder, yielding conserved, nonconserved, and power-law corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016